Выведите формулу для кинетической энергии вращающегося тела

Выведите формулу для кинетической энергии вращающегося тела

«Физика — 10 класс»

Почему для увеличения угловой скорости вращения фигурист вытягивается вдоль оси вращения.
Должен ли вращаться вертолёт при вращении его винта?

Заданные вопросы наводят на мысль о том, что если на тело не действуют внешние силы или действие их скомпенсировано и одна часть тела начинает вращение в одну сторону, то другая часть должна вращаться в другую сторону, подобно тому как при выбросе горючего из ракеты сама ракета движется в противоположную сторону.

Момент импульса.

Если рассмотреть вращающийся диск, то становится очевидным, что суммарный импульс диска равен нулю, так как любой частице тела соответствует частица, движущаяся с равной по модулю скоростью, но в противоположном направлении (рис. 6.9).

Но диск движется, угловая скорость вращения всех частиц одинакова. Однако ясно, что чем дальше находится частица от оси вращения, тем больше её импульс. Следовательно, для вращательного движения надо ввести ещё одну характеристику, подобную импульсу, — момент импульса.

Моментом импульса частицы, движущейся по окружности, называют произведение импульса частицы на расстояние от неё до оси вращения (рис. 6.10):

Линейная и угловая скорости связаны соотношением v = ωr, тогда

Все точки твёрдого дела движутся относительно неподвижной оси вращения с одинаковой угловой скоростью. Твёрдое тело можно представить как совокупность материальных точек.

Момент импульса твёрдого тела равен произведению момента инерции на угловую скорость вращения:

Момент импульса — векторная величина, согласно формуле (6.3) момент импульса направлен так же, как и угловая скорость.

Основное уравнение динамики вращательного движения в импульсной форме.

Угловое ускорение тела равно изменению угловой скорости, делённому на промежуток времени, в течение которого это изменение произошло: Подставим это выражение в основное уравнение динамики вращательного движения отсюда I(ω2 — ω1) = MΔt, или IΔω = MΔt.

Изменение момента импульса равно произведению суммарного момента сил, действующих на тело или систему, на время действия этих сил.

Закон сохранения момента импульса:

Если суммарный момент сил, действующих на тело или систему тел, имеющих неподвижную ось вращения, равен нулю, то изменение момента импульса также равно нулю, т. е. момент импульса системы остаётся постоянным.

Изменение импульса системы равно суммарному импульсу сил, действующих на систему.

Вращающийся фигурист разводит в стороны руки, тем самым увеличивает момент инерции, чтобы уменьшить угловую скорость вращения.

Закон сохранения момента импульса можно продемонстрировать с помощью следующего опыта, называемого «опыт со скамьёй Жуковского». На скамью, имеющую вертикальную ось вращения, проходящую через её центр, встаёт человек. Человек держит в руках гантели. Если скамью заставить вращаться, то человек может изменять скорость вращения, прижимая гантели к груди или опуская руки, а затем разводя их. Разводя руки, он увеличивает момент инерции, и угловая скорость вращения уменьшается (рис. 6.11, а), опуская руки, он уменьшает момент инерции, и угловая скорость вращения скамьи увеличивается (рис. 6.11, б).

Человек может также заставить вращаться скамью, если пойдёт вдоль её края. При этом скамья будет вращаться в противоположном направлении, так как суммарный момент импульса должен остаться равным нулю.

На законе сохранения момента импульса основан принцип действия приборов, называемых гироскопами. Основное свойство гироскопа — это сохранение направления оси вращения, если на эту ось не действуют внешние силы. В XIX в. гироскопы использовались мореплавателями для ориентации в море.

Кинетическая энергия вращающегося твёрдого тела.

Кинетическая энергия вращающегося твёрдого тела равна сумме кинетических энергий отдельных его частиц. Разделим тело на малые элементы, каждый из которых можно считать материальной точкой. Тогда кинетическая энергия тела равна сумме кинетических энергий материальных точек, из которых оно состоит:

Угловая скорость вращения всех точек тела одинакова, следовательно,

Величина в скобках, как мы уже знаем, это момент инерции твёрдого тела. Окончательно формула для кинетической энергии твёрдого тела, имеющего неподвижную ось вращения, имеет вид

В общем случае движения твёрдого тела, когда ось вращения свободна, его кинетическая энергия равна сумме энергий поступательного и вращательного движений. Так, кинетическая энергия колеса, масса которого сосредоточена в ободе, катящегося по дороге с постоянной скоростью, равна

В таблице сопоставлены формулы механики поступательного движения материальной точки с аналогичными формулами вращательного движения твёрдого тела.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Законы сохранения в механике — Физика, учебник для 10 класса — Класс!ная физика

Источник

Энергия и работа при вращательном движении

Формула вычисления работы для поступательного прямолинейного движения имеет вид: W = F·s (Н·м) или (Дж).

Для того, чтобы вывести аналогичную формулу для вращательного движения, необходимо силу F преобразовать в момент силы M, а перемещение s, в угол Θ

Пусть для вращения колеса, радиусом r, прикладывается сила F, как показано на рисунке ниже.

Чему будет равна работа этой силы?

Для вычисления работы применим формулу:

При вращательном движении перемещение s будет равно произведению радиуса колеса r на его угол поворота Θ:

Момент М, создаваемой силой F, вычисляется по формуле:

Таким образом, работа будет равна:

Мы получили формулу вычисления работы для вращательного движения (угол поворота должен быть указан в радианах) — это произведение момента силы на угол поворота.

Вычислим работу, которую совершит колесо автомобиля после 10 оборотов, при условии, что к нему был приложен постоянный момент силы в 100 Н·м:

Кинетическая энергия вращательного движения

Кинетическая энергия объекта, массой m, движущегося поступательно со скоростью v, вычисляется по формуле: K = 1 /2·(m·V 2 ).

Для получения формулы вычисления кинетической энергии для вращательного движения необходимо заменить массу тела m на момент инерции I, а скорость v на угловую скорость ω.

Формула связи тангенциальной скорости v и угловой скорости ω выглядит следующим образом (подробнее смотри «Параметры вращательного движения»):

Подставим это соотношение в предыдущую формулу:

Следует сказать, что данная формула расчета кинетической энергии подходит только для материальной точки.

Формула для вычисления кинетической энергии протяженного объекта будет выглядеть следующим образом:

В случае, если все материальные точки протяженного объекта вращаются с одинаковой угловой скоростью, ее можно вынести за знак суммирования:

Вспомним формулу момента инерции, и сделаем подстановку:

Закрепим полученные теоретические знания на практике, решив интересную задачу.

Предположим, что по наклонной плоскости скатываются два цилиндра одинаковой массы — полый и цельный. Выясним, какой из этих цилиндров скатится быстрее, т.е. будет иметь бОльшую скорость в конце наклонной плоскости.

Решая задачи подобного типа, надо понимать, что, если бы цилиндры просто скользили вниз по наклонной плоскости без вращения, то их потенциальная энергия превращалась бы в кинетическую энергию поступательного движения:

В нашем случае, потенциальная энергия цилиндров превращается в кинетическую энергию, как поступательного, так и вращательного движения:

Поскольку угловая скорость вычисляется по формуле ω=v/r, получим следующее равенство, и выведем формулу для вычисления скорости движения цилиндров:

Для обоих цилиндров все параметры в формуле одинаковы, за исключением момента инерции I (подробнее смотри «Момент инерции протяженного объекта»):

  • для полого цилиндра: I=mr 2 ;
  • для цельного цилиндра: I= 1 /2mr 2

Подставляем соответствующие значения для момента инерции в формулу вычисления скорости цилиндров, и проводим несложные алгебраические преобразования:

Соотношение скоростей цилиндров будет равно:

Таким образом, скорость полого цилиндра будет немного ниже, чем цельного, следовательно, цельный цилиндр быстрее скатится по наклонной плоскости.

С физической точки зрения данный факт объясняется достаточно просто. В полом цилиндре основная масса материальных точек сосредоточена на краю цилиндра (на расстоянии радиуса от его центра), в то время, как в цельном цилиндре материальные точки распределены равномерно по всему радиусу, т.е., при одинаковой угловой скорости в полом цилиндре количество материальных точек, обладающих высокой тангенциальной скоростью, будет больше, чем в цельном, поэтому, полому цилиндру понадобится потратить больше энергии на свой разгон.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Источник

Кинетическая энергия твердого тела при вращении.

Рассмотрим вращение тела вокруг неподвижной оси, которую назовем осью Z (рис.). Линейная скорость точки с массой mi, равна vi = ωR, где R, —расстояние точки до оси Z. Для кинетической энергии i-й материальной точки тела получаем выражение:

.

Полная кинетическая энергия тела

.

Поскольку входящая сюда сумма представляет собой момент инерции относительно оси Z, получаем:

(1.100)

Вычислим работу, совершаемую внешней силой при вращении твердого тела. Элемент работы .

Последнее выражение есть момент внешней силы N , таким образом,

. (1.101)

Полная работа может быть вычислена с помощью следующих формул:

. (1.202)

Приведем в заключение формулу, описывающую кинетическую энергию тела, совершающего плоское движение — поступательное, со скоростью Vc и вращение с частотой ω):

(1.103)

Кинетическая энергия при плоском движении слагается из энергии поступательного движения со скоростью центра инерции тела и энергии вращения вокруг оси, проходящей через центр инерции.

Задания и вопросы для самоконтроля

1. Что такое момент импульса системы.?

2. Сформулируйте закон сохранения момента импульса системы.

3.Что называется моментом инерции тела относительно оси вращения?

4. Вывести основное уравнение вращательного движения твердого тела.

5. Приведите значения моментов инерции геометрических тел.

6. Как рассчитать кинетическую энергию при плоском движении?

Источник

§ 3.5 Кинетическая энергия вращающегося тела

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υi=ωri, тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J — момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис ), это плоское движение. В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

dA = dE или

Учитывая, что Jβ = M, ωdr = dφ, имеем α тела на конечный угол φ равна

(3.25)

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Примеры решения задач

Пример 2.1. Маховик массой m =5кг и радиусом r = 0,2 м вращается вокруг горизонтальной оси с частотой ν0=720 мин -1 и при торможении останавливается за t =20 с. Найти тормозящий момент и число оборотов до остановки.

Для определения тормозящего момента применим основное уравнение динамики вращательного движения

где I=mr 2 – момент инерции диска; Δω =ω — ω0, причём ω =0 конечная угловая скорость, ω0=2πν0 — начальная. М –тормозящий момент сил, действующих на диск.

Зная все величины, можно определить тормозящий момент

(2)

Из кинематики вращательного движения угол поворота за время вращения диска до остановки может быть определён по формуле

(3)

где β–угловое ускорение.

По условию задачи: ω =ω0 – βΔt, так как ω=0, ω0 = βΔt

Тогда выражение (2) может быть записано в виде:

Пример 2.2. Два маховика в виде дисков одинаковых радиусов и масс были раскручены до скорости вращения n= 480 об/мин и предоставили самим себе. Под действием сил трения валов о подшипники первый остановился через t =80 с, а второй сделал N= 240 оборотов до остановки. У какого и маховика момент сил трения валов о подшипники был больше и во сколько раз.

Момент сил терния М1 первого маховика найдём, воспользовавшись основным уравнением динамики вращательного движения

где Δt – время действия момента сил трения, I=mr 2 — момент инерции маховика , ω1= 2πν и ω2= 0– начальная и конечная угловые скорости маховиков

Тогда

Момент сил трения М2 второго маховика выразим через связь между работой А сил трения и изменением его кинетической энергии ΔEк:

где Δφ = 2πN – угол поворота, N -число оборотов маховика.

Тогда , откуда

Отношение будет равно

Момент сил трения второго маховика в 1.33 раза больше.

Пример 2.3. Масса однородного сплошного диска m, массы грузов m1 и m2 (рис.15). Скольжения и трения нити в оси цилиндра нет. Найти ускорение грузов и отношение натяжений нити в процессе движения.

Проскальзывания нити нет, поэтому, когда m1 и m2 будут совершать поступательное движение, цилиндр будет совершать вращение относительно оси, проходящей через точку О. Положим для определённости, что m2 > m1 .

Тогда груз m2 опускается и цилиндр вращается по часовой стрелке. Запишем уравнения движения тел, входящих в систему

Первые два уравнения записаны для тел с массами m1 и m2 , совершающих поступательное движение, а третье уравнение – для вращающегося цилиндра. В третьем уравнении слева стоит суммарный момент сил, действующих на цилиндр (момент силы T1 взят со знаком минус, так как сила T1 стремится повернуть цилиндр против часовой стрелки). Справа I — момент инерции цилиндра относительно оси О, который равен

где R — радиус цилиндра; β — угловое ускорение цилиндра.

Так как проскальзывания нити нет, то . С учётом выражений для I и β получим:

Складывая уравнения системы, приходим к уравнению

Отсюда находим ускорение a грузов

Далее легко найти T1 и T2 и их отношение

Из полученного уравнения видно, что натяжения нитей будут одинаковы, т.е. =1, если масса цилиндра будет гораздо меньше массы грузов.

Пример 2.4. Полый шар массой m = 0,5 кг имеет внешний радиус R = 0,08м и внутренний r = 0,06м. Шар вращается вокруг оси, проходящей через его центр. В определённый момент на шар начинает действовать сила, в результате чего угол поворота шара изменяется по закону . Определить момент приложенной силы.

Решаем задачу, используя основное уравнение динамики вращательного движения . Основная трудность – определить момент инерции полого шара, а угловое ускорение β находим как . Момент инерции I полого шара равен разности моментов инерции шара радиуса R и шара радиуса r:

где ρ — плотность материала шара. Находим плотность, зная массу полого шара

Отсюда определим плотность материала шара

Для момента силы M получаем следующее выражение:

Пример 2.5. Тонкий стержень массой 300г и длиной 50см вращается с угловой скоростью 10с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Найдите угловую скорость, если в процессе вращения в той же плоскости стержень переместится так, что ось вращения пройдёт через конец стержня.

Используем закон сохранения момента импульса

(1)

(Ji-момент инерции стержня относительно оси вращения).

Для изолированной системы тел векторная сумма моментов импульса остаётся постоянной. Вследствие того, что распределение массы стержня относительно оси вращения изменяется момент инерции стержня также изменяется в соответствии с (1):

Известно, что момент инерции стержня относительно оси, проходящей через центр масс и перпендикулярной стержню, равен

По теореме Штейнера

(J-момент инерции стержня относительно произвольной оси вращения; J0 – момент инерции относительно параллельной оси, проходящей через центр масс; а— расстояние от центра масс до выбранной оси вращения).

Найдём момент инерции относительно оси, проходящей через его конец и перпендикулярной стержню:

Подставим формулы (3) и (4) в (2):

Пример 2.6. Человек массой m=60кг, стоящий на краю платформы массой М=120кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой ν1=12мин -1 , переходит к её центру. Считая платформу круглым однородным диском, а человека – точечной массой, определите, с какой частотой ν2 будет тогда вращаться платформа.

Решение: Согласно условию задачи, платформа с человеком вращается по инерции, т.е. результирующий момент всех сил, приложенных к вращающейся системе, равен нулю. Поэтому для системы «платформа-человек» выполняется закон сохранения момента импульса

где — момент инерции системы, когда человек стоит на краю платформы (учли, что момент инерции платформы, равен(R – радиус платформы), момент инерции человека на краю платформы равенmR 2 ).

— момент инерции системы, когда человек стоит в центре платформы (учли, что момент человека, стоящего в центре платформы, равен нулю). Угловая скорость ω1= 2π ν1 и ω1= 2π ν2.

Подставив записанные выражения в формулу (1), получаем

Источник

Читайте также:  Как отстирать наволочки от потливости головы цветные
Оцените статью