Меню

Кто вывел постоянную больцмана

Постоянная Больцмана — формула, значение и измерение коэффициента

Исторические данные

Как точная наука, физика не считается абсолютной без набора довольно весомых констант, которые интегрируются как универсальные коэффициенты в уравнения, устанавливающие связь между какими-либо величинами. Это фундаментальные элементы, благодаря которым многие вещи приобретают неизменность.

Между этими характеристиками, присущими материи Вселенной, существует постоянная Больцмана, значение которой входит в ряд весомых уравнений. Стоить сказать об определённом количестве решений с помощью неизменной.

Законы Ньютона управляют силами, массами и движениями объектов или систем и считаются детерминированными: то есть тот, кто полностью знает начальные условия в системе, может точно предсказать будущее. Именно так космические миссии размещают посадочные модули роботов в определённых желаемых местах в сотнях миллионов километров от Земли.

Для огромного комплекса объектов, таких как миллиарды триллионов горячих молекул, движущихся в паровом двигателе, доминирующей единицей расчёта является постоянная Больцмана, но невозможно определить состояние каждой независимой частицы: они движутся с разными скоростями и энергетическими диапазонами.

Например, молекулы воздуха при комнатной температуре 25 градусов по Цельсию (300 Кельвинов, или 77 гр. по Фаренгейту) движутся со средней скоростью около 500 метров в секунду (1100 миль в час). Но некоторые движутся 223 м/с и 717 м/с и так далее, и все они идут в разных направлениях. Каждое их свойство не может быть известно.

Однако понимание физики тепловых явлений требует некоторого способа сделать математически полезные утверждения о коллекциях огромного числа объектов. Больцман и другие учёные показали, что это можно вычислить с точки зрения статистики и вероятностей механики. Коллективные термодинамические свойства комбинаций вытекают из суммы энергий каждого отдельного объекта. Интересно, что разные значения энергии имеют иные вероятности возникновения. Для вычислений нужно знать, чему равно значение постоянной Больцмана. Вот уравнение: E=32kT

Молекулы и тепловые вещества

Физический смысл постоянной Больцмана и температуры применяется к свойству степени нагрева тела. В физике используется безусловная шкала, основанная на выводе молекулярно-кинетической доктрины в качестве меры, показывающей количество энергии теплового движения частиц.

Данные для вычислений, используемые в системе СГС, считаются очень большими единицами, чтобы выразить энергию молекул, и, таким образом, довольно сложно измерить температуру этим способом. Удобной единицей снятия данных считается градус, и данные фиксируются косвенно, путём регистрации изменяющихся макроскопических показаний вещества.

В однородном безупречном газе при определённой температуре энергия на любом поступательном уровне свободы равна, как следует из определения Максвелла. При комнатной температуре эта энергия равна j или 0,013 эВ. В одноатомном безупречном газе любой атом содержит 3 степени свободы, это соответствует 3 пространственным осям, что фактически означает, что любой атом содержит энергию B. С учётом тепловой энергии можно определить среднее значение квадрата скорости атомов, которое обратно пропорционально корню массы.

Особенности энергии

Для расчёта веществ при температурах и давлениях, ближайших к обычным, применяется совершенная газовая модель, то есть та, величина молекулы которой гораздо меньше занята конкретной численностью веществ, а расстояние между частичками гораздо больше радиуса их взаимодействия. Основываясь на уравнениях кинетической доктрины, средняя энергия этих частиц нацелена как ECP = 3/2 ∙ kT, где E-кинетическая энергия, T-температура, а 3/2 — коэффициент пропорциональности K, введённый Больцманом.

Численность здесь характеризует:

  • количество степеней свободы поступательного движения молекулы;
  • пространственные измерения.

Смысл k, который позднее был назван в честь Больцмана, демонстрирует, сколько Джоулей на уровне 1. В иных доктринах его смысл определяет, как статистически, в среднем, энергия термического неселективного перемещения 1-го моноатомного безупречного газа возрастает с температурой на 1 градус.

Статистическое рассредотачивание

Так как макроскопические состояния материи считаются итогом поведения большого числа частиц, они описываются статистическими способами. Последнее подразумевает выяснение того, как распределяются энергосвойства молекул газа.

Читайте также:  Как правильно отбелить кипячением

Рассредотачивание кинетических скоростей по Максвеллу происходит по-разному. Практически он показывает, что в равновесном газе главное множество молекул содержит части, более близкие к вероятным v = √ (2kT / m0), где m0-масса молекулы.

Определение Больцманом возможных энергий для газов будет пребывать на фоне всякой силы, к примеру, гравитации. Это зависит от пропорции 2-х вещей:

  • притяжения к Земле;
  • хаотического термического перемещения частиц газа.

В итоге чем меньше возможность энергии молекул (ближе к плоскости планеты), тем выше их сосредоточение.

Оба статистических способа связаны с рассредотачиванием Максвелла-Больцмана, содержащим экспоненциальный коэффициент eE / kT, где E — сумма кинетической и возможной энергий, а kT — средняя сила термического смещения, обусловленная ПБ. Формула постоянной Больцмана — коэффициент, равный k=1,38·10−23 ДжК.

Константа пропорциональности неизменна по Больцману. Это выражение, которое определяет связь между микроскопическим и макроскопическим состояниями, выражает центральную идею статистической механики. Планковское число измерений температуры составляет 1 416 785 (71) • 1032 К, что фактически соответствует энергии массового спокойствия.

Безграничная материя

С точки зрения теории неограниченного погружения материи, ПБ является величиной только 1-го атомного смысла. Как показывает идеальный тест физических единиц измерения значений, при использовании шкалы температуры и тепловой энергии, содержащиеся в единице количества вещества, они считаются неизменными. Отсюда выделяют данные, практически используя температуру как физическое определение на одном уровне. Вещества могут быть пересчитаны по значению неизменной со вступлением надлежащих коэффициентов схожести. Теоретическим критерием этой процедуры считается SPF-симметрия.

Можно получить определение звёздного неба и по теории Планка оно будет простым минусом импульса объектов. Его данные также равны понятию Kps = K ∙ f = 9,187 ∙ 1032 Дж / К, где f — коэффициент однородности массы.

ПБ определяет ассоциация между действенной температурой большого количества обычных звёздных объектов как меру термической энергии и средней кинетической при смещении. Не считая того, что она связывает внутреннюю температуру объектов с имеющейся энергией. Такие константы могут быть рассчитанными для любого значения материи.

В результате ПБ:

  • позволяет оценивать кинетическую температуру частиц;
  • подчёркивает вероятность нахождения и распределения температуры изнутри самих частиц.

Измерение постоянной Больцмана является одной из ведущих констант. Это не только разрешает установить ассоциацию между линиями микроскопичных явлений молекулярного значения с параметрами процессов, наблюдаемых в макромире. И дело не только в том, что эта величина включена в ряд значимых уравнений.

В настоящем времени непонятно, есть ли какой-нибудь вещественный принцип произведения, на базе которого он имел бы возможность получить вывод на теоретическом уровне. В иных доктринах ничего не рассказывается об этом. На самом деле смысл этой константы может быть практически схожим с другими величинами.

Изменения в фиксации постоянной

В 2017 году мировое сообщество измерений выполнило требования, чтобы дать точное толкование ПБ и переопределить Кельвин. Акустическая термометрия измерялась различными исследовательскими группами, и она использовалась в окончательном определении ПБ для системы СИ, которая была утверждена в ноябре 2018 года. На основании этих данных значение концентрации зависимости KB составляет 1,380649 x 10 -23 Дж к-1.

Читайте также:  Чистить арматуру или нет

Хотя Кельвин не был основан на физическом артефакте, его изменение также важно. Более раннее определение размерности было основано на специфических свойствах универсальной постоянной природы. Основываясь на постоянной Стефана Больцмана, Кельвин также используют учёные, применя букву K в вычислениях. Это позволяет измерениям температуры быть действительно универсальными.

Источник

Постоянная Больцмана

Как формируются известные нам параметры окружающей среды, вроде температуры или давления, на уровне атомов? Можно ли соединить воедино законы микро и макромира при помощи постоянной Больцмана? На эти вопросы искал ответы известный австрийский физик, чьим именем ее нарекли. Он же и стал жертвой своих изысканий, совершив самоубийство на почве многолетних споров на эту тему.

Людвиг Больцман (1844-1906)

Немного истории

На рубеже 19 и 20 веков в научной среде преобладали две когорты физиков с противоположными взглядами – атомисты и антиатомисты. Первые в фундаментальных расчетах исходили из того, что все сущее состоит из атомов. Вторые считали, что атомы – суть удобные математические абстракции (как сейчас мы говорим о кварках и виртуальных частицах).

Людвиг Больцман положил начало статистической механике, внес огромный вклад в термодинамику и прояснил понятие энтропии. В своих идеях он был ярым атомистом и использовал это в построении своих научных теорий. Антиатомисты постоянно набрасывались на его идеи, а каждая новая концепция высмеивалась. Кто такое выдержит? Результатом стала тяжелая болезнь, депрессия и суицид великого ученого.

Суть проблемы

Представим себе, что мы в конце 19-го века и не знаем, что воздух состоит из молекул. Как можно объяснить, что нагреваясь, он расширяется? И вообще, за счет чего он нагревается? Что такое температура? Как она связана с энергией? Ответом стали атомистические формулы статистической механики и термодинамики.

Сейчас мы знаем, что температура газа зависит от кинетической энергии его молекул. А давление создается упругими столкновениями атомов со стенками. Но как рассчитать ту грань, которая позволяет нам перейти от квантовых систем к макро объектам?

Формула

Такую возможность дает нам как раз наша константа. Энергия рассчитывается по формуле:

1/2mv²=Tk

Где m – масса молекул газа, v – скорость их движения, T – результирующая температура и k – собственно, константа Больцмана. Она равняется 1,38 x 10 –23 Дж/К.

Таким образом, в левой части формулы мы видим характеристики атомарного микромира – масса и скорость молекул. В правой же части получаем характеристику макромира, которую мы можем измерить доступными нам инструментами – термометром. Мостик проложен.

Немного отвлечемся от основной темы. А вы знали, что автор нашей постоянной известен своей философской концепцией Больцмановского мозга? В соответствии с ней, вероятность появления интеллекта в результате флуктуаций (то есть, случайно, мгновенно), выше, чем в результате эволюции. При условии, что время жизни Вселенной не ограничено.

Способы вычисления константы

Есть два основных способа нахождения коэффициента Больцмана:

  1. Через уравнение идеального газа.
  2. Через формулу броуновского движения.

Первым способом коэффициент вычисляется просто. Берем газ и нагреваем его до определенной температуры. При этом ее изменение замеряем термометром, а изменение давления – манометром. Зная при этом число Авогадро и объем, подставляем числа в формулу идеального газа (pV=vRT) и получаем k.

Читайте также:  Для чего чистят сосуды головного мозга

Второй способ сложнее, поэтому опишем его очень кратко для наглядности. Не задумывались, как проще всего перенести броуновское движение молекул на макромир? Можно взять зеркало, подвешенное на нити в комнате. Молекулы воздуха создадут упругие удары по зеркалу. Направив на него луч света, мы сможем регистрировать даже его малейшие повороты.

Рассчитав ряд таких параметров, как модуль кручения, момент инерции зеркала и температуру в комнате, мы можем определить k.

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Источник

Постоянная Больцмана

Людвиг Больцман — один из создателей молекулярно-кинетической теории газов, на которой зиждется современная картина взаимосвязи между движением атомов и молекул с одной стороны и макроскопическими свойствами материи, такими как температура и давление, с другой. В рамках такой картины давление газа обусловлено упругими ударами молекул газа о стенки сосуда, а температура — скоростью движения молекул (а точнее, их кинетической энергией).Чем быстрее движутся молекулы, тем выше температура.

Постоянная Больцмана дает возможность напрямую связать характеристики микромира с характеристиками макромира — в частности, с показаниями термометра. Вот ключевая формула, устанавливающая это соотношение:

где m и v — соответственно масса и средняя скорость движения молекул газа, Т — температура газа (по абсолютной шкале Кельвина), а k — постоянная Больцмана. Это уравнение прокладывает мостик между двумя мирами, связывая характеристики атомного уровня (в левой части) с объемными свойствами (в правой части), которые можно измерить при помощи человеческих приборов, в данном случае термометров. Эту связь обеспечивает постоянная Больцмана k, равная .

Раздел физики, изучающий связи между явлениями микромира и макромира, называется статистическая механика. В этом разделе едва ли найдется уравнение или формула, в которых не фигурировала бы постоянная Больцмана. Одно из таких соотношений было выведено самим австрийцем, и называется оно просто уравнение Больцмана:

где S — энтропия системы (см. Второе начало термодинамики), p — так называемый статистический вес (очень важный элемент статистического подхода), а b — еще одна константа.

Всю жизнь Людвиг Больцман в буквальном смысле опережал свое время, разрабатывая основы современной атомной теории строения материи, вступая в яростные споры с подавляющим консервативным большинством современного ему научного сообщества, считавшего атомы лишь условностью, удобной для расчетов, но не объектами реального мира. Когда его статистический подход не встретил ни малейшего понимания даже после появления специальной теории относительности, Больцман в минуту глубокой депрессии покончил с собой. Уравнение Больцмана высечено на его надгробном памятнике.

Австрийский физик. Родился в Вене в семье госслужащего. Учился в Венском университете на одном курсе с Йозефом Стефаном (см. Закон Стефана—Больцмана). Защитившись в 1866 году, продолжил научную карьеру, занимая в разное время профессорские должности на кафедрах физики и математики университетов Граца, Вены, Мюнхена и Лейпцига. Будучи одним из главных сторонников реальности существования атомов, сделал ряд выдающихся теоретических открытий, проливающих свет на то, каким образом явления на атомном уровне сказываются на физических свойствах и поведении материи.

Источник