Как вывести соотношение для экспериментального определения коэффициента пуассона

iSopromat.ru

Коэффициент Пуассона (коэффициент поперечной деформации) одна из механических характеристик материалов, показывает зависимость между продольными и поперечными деформациями элемента, характеризует упругие свойства материала.

Обозначается строчными греческими буквами ν или μ и не имеет размерности.

Определяется отношением относительных поперечных ε поп и продольных ε пр деформаций бруса (элемента):

Порядок определения коэффициента поперечной деформации:

Рассмотрим деформацию элемента цилиндрической формы (рис. 1) который до нагружения имеет следующие размеры:

Рис. 1. Размеры бруса до нагружения

здесь
h0 — начальный продольный размер;
d0 — начальный поперечный размер (в данном случае — диаметр).

После нагружения некоторой продольной системой сил (например сжимающей) брус изменит свои размеры, продольный размер уменьшится (т.к. сжатие) а поперечный наоборот увеличится (рис. 2).

Рис. 2. Размеры бруса после деформации

Полученные в результате деформации размеры обозначим соответственно h1 и d1, где:

здесь Δ h и Δ d соответственно абсолютные продольные и поперечные деформации.

Отношение абсолютных деформаций к соответствующим начальным размерам покажет относительные деформации:

а их отношение в свою очередь определяет коэффициент Пуассона материала бруса.

Значение коэффициента принимается по модулю, т.к. продольная и поперечная деформации всегда имеют противоположные знаки (удлинение бруса приводит к его сужению и наоборот).

В таблице 1 приведены сравнительные значения коэффициента для некоторых материалов.

Источник

ИЗУЧЕНИЕ ПЕРВОГО НАЧАЛА ТЕРМОДИНАМИКИ. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА ПО МЕТОДУ КЛЕМАНА-ДЕЗОРМА

1. Изучение тепловых процессов в идеальном газе.

2. Экспериментальное определение коэффициента Пуассона.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

1. Стеклянный баллон с воздухом.
2. Насос.
3. Водяной манометр.
4. Измерительная линейка.

Равновесное состояние термодинамической системы характеризуется совокупностью величин, называемых параметрами состояния. В простейших случаях параметрами состояния являются давление р, объем V и абсолютная температура Т.

Уравнение, устанавливающее связь между р, V, Т, называется уравнением состояния. В явном виде уравнение состояния известно только для некоторых систем. Например, уравнение состояния идеального газа имеет вид

. (1)

Равновесным состоянием термодинамической системы называется такое состояние, которое не изменяется со временем и неизменность его параметров не обусловлена каким-либо внешним относительно данной системы процессом. Состояние равновесия не означает, что в термодинамической системе нет никакого движения. Например, в газе, который находится в состоянии термодинамического равновесия, молекулы интенсивно движутся. Равновесие термодинамической системы есть равновесие статистическое. Оно характеризуется тем, что мгновенные значения параметров состояния близки к средним, и тем, что статистическое равновесие является наиболее вероятным состоянием. На диаграмме состояния равновесное состояние изображается точкой.

Если состояние системы со временем изменяется, то это значит, что в системе происходит процесс. Различают нестатические и квазистатические (равновесные) процессы.

Всякий процесс есть нарушение состояния равновесия. Пусть идеальный газ находится в цилиндре с подвижным поршнем. Если быстро опустить поршень так, что за время Dt объем уменьшается на очень малую величину DV, то плотность газа возрастает сначала вблизи поршня. Молекулы слоя газа, прилегающего к поршню, получат за счет совершенной работы над газом дополнительную энергию, и температура слоя повысится. Состояние равновесия газа окажется нарушенным. Через некоторое время молекулы снова равномерно распределятся по всему объему, а полученная молекулами дополнительная энергия распределится между всеми молекулами, и снова установится состояние равновесия.

Процесс перехода системы из неравновесного состояния в равновесное называется релаксацией. Если скорость изменения объема гораздо больше скорости восстановления равновесия ,

,

то процесс изменения объема будет нестатическим.

Если скорость изменения объема много меньше скорости восстановления равновесия,

,

то изменением состояния системы в любой момент времени можно пренебречь, считая, что система последовательно переходит из одного состояния равновесия в другое, бесконечно близкое к нему. Такой процесс называется квазистатическим.

Подобные рассуждения можно провести относительно изменения других параметров состояния.

На диаграмме состояния квазистатический процесс изображается непрерывной линией. Рассмотрим квазистатические процессы. В основу классификации термодинамических процессов можно положить признак неизменности какого-нибудь из параметров состояния или величин, являющихся функциями параметров состояния. Процессы, когда тот или иной параметр остается неизменным в течение всего процесса, называются ИЗОПРОЦЕССАМИ.

Процесс, происходящий при постоянном давлении p=const, называется ИЗОБАРНЫМ, при постоянном объеме V=const- ИЗОХОРНЫМ, при постоянной температуре Т=const — ИЗОТЕРМИЧЕСКИМ. Если процесс протекает без теплообмена, то его называют АДИАБАТНЫМ. При квазистатическом адиабатном процессе сохраняется энтропия системы S=const, поэтому адиабатный процесс называют иначе ИЗОЭНТРОПИЙНЫМ.

Для идеального газа соответствующие процессы описываются уравнениями:

; (2)
; (3)
; (4)
, (5)

где g — коэффициент Пуассона, равный отношению изобарной и изохорной теплоемкостей идеального газа,

. (6)

Остановимся на адиабатном процессе. Применим к адиабатному процессу первое начало термодинамики:

δQ = dE + δA. (7)

Так как δQ =TdS = 0 при S = const, то

dE = — δA. (8)

Внутренняя энергия Е системы при адиабатном процессе изменяется за счет работы.

Для идеального газа внутренняя энергия зависит только от температуры:

, (9)

поэтому согласно (8) можно записать уравнение

.
. (10)

При адиабатном расширении dV >0 идеальный газ охлаждается dТ 0.

Если в (10) подставить и учесть соотношение Майера , то получим

. (11)

Проинтегрировав, найдем уравнение Пуассона в параметрах Т, V:

. (12)

Заменяя в (12) Т

pV по формуле (1), можно получить уравнение Пуассона в параметрах p, V (5).

ОПИСАНИЕ УСТАНОВКИ И ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА

Коэффициент Пуассона можно измерить с помощью прибора Клемана-Дезорма (рис. 1), состоящего из стеклянного баллона с воздухом, насоса и водяного манометра. В баллон накачивается с помощью насоса воздух. При этом давление воздуха в баллоне повысится и станет равным

, (13)

где – превышение давления воздуха в баллоне над атмосферным давлением . — разность уровней воды в коленах манометра (рис. 1). Открывают на короткое время кран К, чтобы давление в баллоне сравнялось с атмосферным , после чего закрывают кран.

Процесс расширения кратковременный, заметного теплообмена между воздухом в баллоне и окружающей средой не происходит, поэтому процесс можно считать адиабатным. После адиабатного расширения температура воздуха в баллоне понизится и станет меньше температуры окружающей среды. В результате теплообмена через некоторый промежуток времени температура воздуха в баллоне сравняется с комнатной. На этом этапе имеет место изохорный процесс нагревания. При этом давление в баллоне возрастает, достигая значения

, (14)

где — превышение давления в баллоне над атмосферным p0 после изохорного нагрева. Dh2 — разность уровней воды в коленах манометра.

Представим на диаграмме состояний в параметрах p, V вышеуказанные процессы (рис. 2). До открытия крана в баллоне находился сжатый воздух объемом V1 при комнатной температуре Т0 и давлении .

Это состояние соответствует т.1. После того как открыли кран К, воздух адиабатно расширяется до объема V2 и охлаждается до температуры Т2. При этом давление понижается до атмосферного p2 = p0. Это состояние изображается т.2. Состояния 1 и 2 связаны уравнением Пуассона

. (15)

После закрытия крана К начинается изохорный процесс нагревания воздуха. По окончании теплообмена в баллоне установится комнатная температура Т0 при давлении p0 > p3. Это состояние изображается т.3 на диаграмме состояний. Состояния 1 и 3 соответствуют одной и той же температуре Т0, поэтому т.1 и т.3 должны принадлежать одной изотерме, а параметры этих состояний связаны уравнением (4):

. (16)

Из (15) и (16), исключая отношение V2/V1 , получим

. (17)
.

В нашем эксперименте

, ,

поэтому можно записать

.
(18)

или, учитывая, что

, ,
. (19)

Экспериментальное определение коэффициента Пуассона сводится к измерению разности уровней манометра Dh1 и Dh2.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. В баллон с помощью насоса накачивают немного воздуха. При накачивании воздух, сжимаемый поршнем насоса, нагревается. Необходимо выждать некоторое время, чтобы воздух в баллоне снова принял температуру окружающей среды. После этого измеряют разность уровней воды в коленах манометра Dh1 (мм).

2. Открывают кран К. К моменту времени, когда уровни жидкости в коленах манометра сравняются, кран закрывают. Выждав 2-3 минуты, чтобы газ, охлажденный при адиабатном расширении, нагрелся до комнатной температуры, измеряют разность уровней воды в коленах манометра Dh2.

3. По формуле (19) вычисляют значение коэффициента Пуассона gэ.

4. Измерения повторяют 5-7 раз.

5. Находят среднее значение коэффициента Пуассона .

6. Выражают коэффициент Пуассона для идеального газа через число степеней свободы. Находят теоретическое значение коэффициента Пуассона gт, считая воздух мономолекулярным двухатомным газом.

7. Вычисляют расхождение между экспериментальным и теоретическим значениями коэффициента Пуассона .

Dh1, мм Dh2, мм gэ gт e, %

1. Назовите основные задачи работы. Какие законы применяются для решения этих задач?

2. Выведите расчетную формулу для коэффициента Пуассона методом Клемана-Дезорма.

3. Опишите экспериментальную установку. Из каких основных частей она состоит и для чего предназначен каждый элемент установки?

4. Что такое термодинамическая система? Какие системы называются изолированными? Приведите примеры.

5. Какие термодинамические параметры являются функциями состояния, а какие являются функциями процесса?

6. Какие состояния называются равновесными? Какие процессы называются равновесными?

7. Что такое уравнение состояния? Запишите и проанализируйте уравнение состояния идеального газа.

8. Какие процессы являются изотермическими, изобарическими, изохорическими? Запишите и поясните законы, которым подчиняются приведенные изопроцессы.

9. Что такое релаксация? От чего зависит время релаксации?

Источник

Читайте также:  Как чистить литой мрамор
Оцените статью